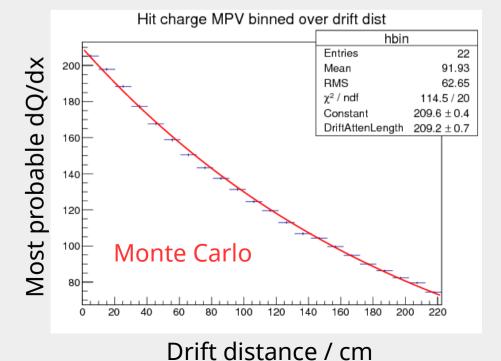
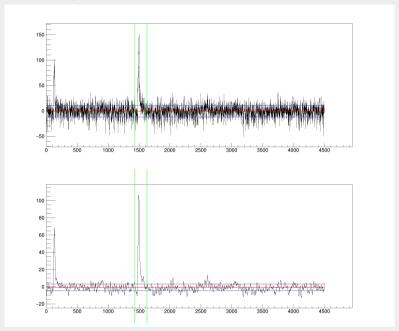
Hit Reconstruction & Purity

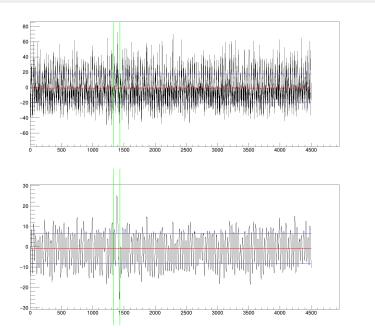

Matt Thiesse
31 August 2016
35-ton Sim/Reco Meeting

Purity Study Using TPC Data

- Complementary to dedicated Purity Monitors
- Charge attenuation due to electron attachment to electronegative impurities: $Q_{\rm collected} = Q_{\rm ionized} e^{-t_{\rm drift}/\tau_{\rm life}}$

Impurity concentration is determined from electron lifetime:


$$au_{\text{life}} = \left(\sum_{i} k_{i} n_{i}\right)^{-1}$$

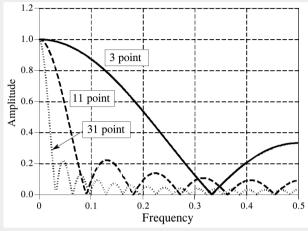


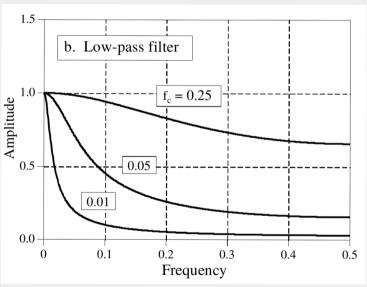
- 2 important measurements:
 - Electron lifetime:
 - At different times
 - In different regions of the detector
- Data quality issues mean only collection plane information is useful!

Previously

- Wrote new Hit Finder which accounts for between-channel variations in noise
- Improved hit/noise separation algorithm
 - Previously described as a "Track-finder",
 but now I'm hesitant to use that term
 because of its extremely limited scope
- Purity analysis code is ready, just need to feed it sensible reconstructed hits
- Need to validate the hit finding algorithm...

"Tracker" improvements

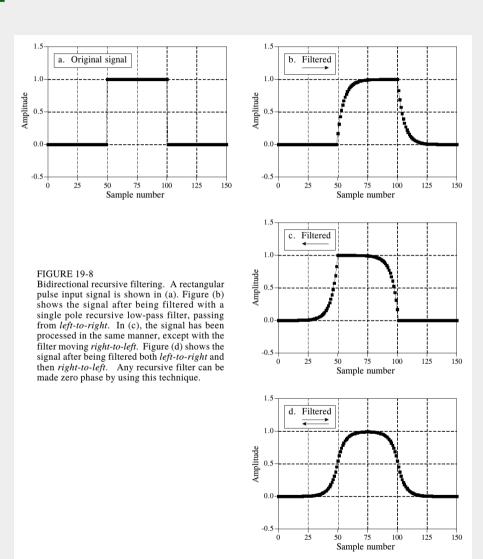

- Restructure code package
 - More generalizable and segmented
- Use MLE for "track" fitting (http://dx.doi.org/10.1006/cviu.1999.0832), rather than χ^2/DOF or Sum of squared residuals / DOF
 - Significantly improved fit process, more robust
 - Minimise the -Log(likelihood)
 - Points nearer to best fit line are more heavily weighted
 - More inliers → better fit
- Fit to a 2-dim polynomial, to account for slight bending of the tracks from scattering
- Use seeded RNG from LarSoft for deterministic random sampling
- Fixed incorrect "track pitch" calculation: assume θyx and θyz from counter positions


Hit Finder Improvements

Previously used simple moving average filter

 Frequency response function for this filter type is very poor, not optimal

 Use single-pole recursive filter to preserve a smooth frequency response


$$y[n] = a_0 x[n] + a_1 x[n-1] + a_2 x[n-2] + a_3 x[n-3] + \cdots$$

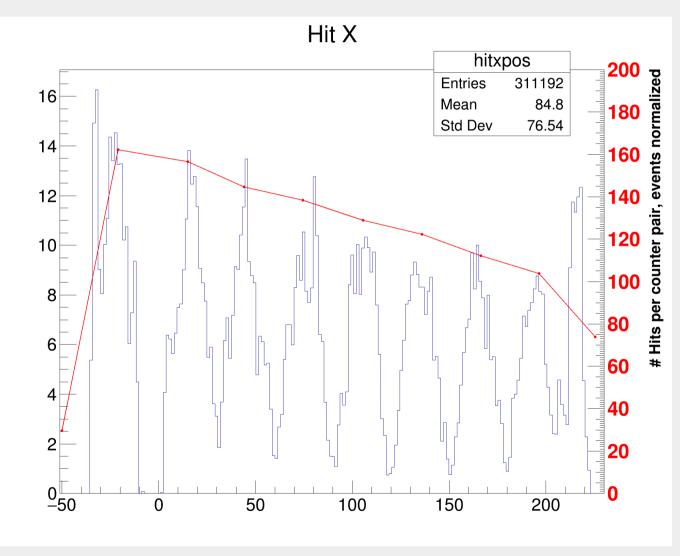
+ $b_1 y[n-1] + b_2 y[n-2] + b_3 y[n-3] + \cdots$

Hit Finder Improvements

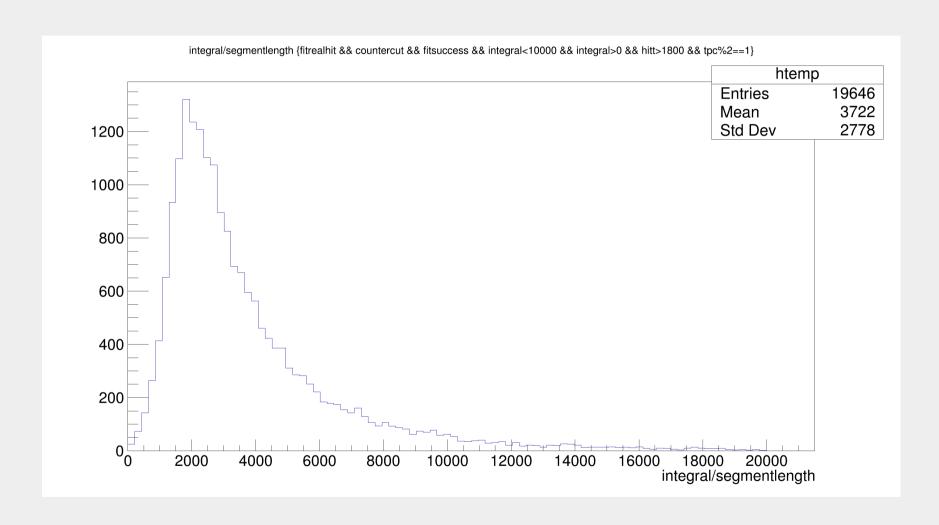
 Do the filter bidirectionally, to preserve the phase of the signal (no net shift of hits in time)

• Reminder:

- The purpose of my filtering is to allow for better hit finding and to use lower thresholds
- On the filtered signal, I use a multiple of the signal RMS as the threshold and to find the hit endpoints
- Hit charge is still calculated from the raw, unfiltered signal

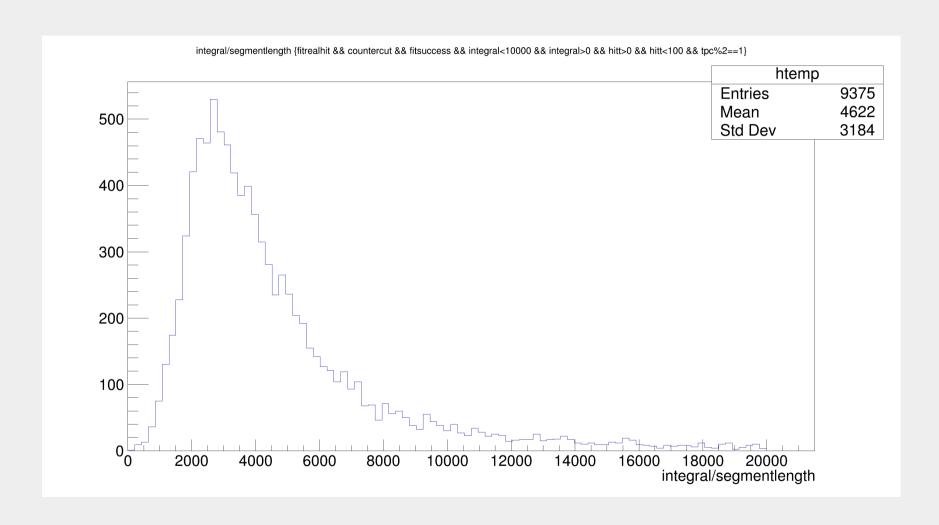

Hit Finder Validation

- Michelle's proposal:
 - Show that the charge distribution is not changed by using a different "threshold" for each wire
 - Want the threshold to be low enough to find even the smallest hits at the longest drift times, otherwise the landau MPV will be skewed
 - Do this on a wire-by-wire basis
 - 1)Select opposite EW counter triggers, hits should have the smallest possible charge on each wire
 - 2)Count number of hits vs. drift time on each wire
 - 3)Show that this distribution is flat
 - 4)If the hit finding threshold is above the rise of the landau, the distribution in 3) will slope down as charge is attenuated over the drift


- Any other suggestions of validations are welcome!
- Need to show:
 - Noise is effectively separated from real hits
 - Charge distribution of hits is landau

Hit Finder Validation

- First pass: unsuccessful validation(???)
- Don't know what this plot should look like for a "valid" hit finder, so can't interpret the graph yet
- Doesn't look good so far...



Landau-ness of Hit Charge

Long drift time, Hit integral / effective track length

Landau-ness of Hit Charge

Short drift time, Hit integral / effective track length

MC Simulation verification

- In process of doing a MC study of the hit finder, would like to do another plot like on slide 8
- Jobs still running...
- (Should MC production be zero suppressed? Since data isn't...)

Thoughts about efficiency

West

Upper

- For East/West muons, we expect to find a hit on every wire
- Excluding bad wires (from channelstatus dune.fcl)
 - Obviously not a complete list
- In long drift, number of bad wires crossed, 47 +- 11 (depending on how many wires crossed in APA3vs5)
- Should find 289 +- 11 hits for EW muon in long drift and 265 +- 28 hits for EW muons in short drift
- (Some entire TPCs were off completely during some runs, some RCEs were off, but event builder still read zeros?)

TPC4 Upper 0 Bad TPC2 TPC0 TPC6 Lower 42 Bad 56 Bad 1 Bad East TPC3 Lower TPC1 Lower TPC7 Counters Counters 6 Bad 4 Bad 30 Bad TPC5 Upper 18 Bad

Final thoughts

- The "validity" of this hit finder is still under question
- Loads more work to be done
 - Tweak algorithm parameters to make it more sensitive to lower SNR
 - Reduce the influence of "fake" noise hits even further. It's possible, these are dominating the low end of the landau spectrum on previous plots.
 - Continue validating
 - Need to simulate to determine the expected shape of hit distribution with toohigh threshold?
 - Any other ideas?
 - Repeat channel-by-channel
 - Do the purity measurement!!
 - Not possible yet because the threshold is still too high...